Introduction to Mathematics and Modeling

lecture 8

The cross product
This week

1. Section 12.4: the cross product
2. Section 12.5: lines and planes in space
The cross product – introduction

Section 12.4

1.1

Definition

Let \(u = (u_1, u_2, u_3) \) and \(v = (v_1, v_2, v_3) \) be two vectors in \(\mathbb{R}^3 \). The cross product van \(u \) and \(v \) is defined as

\[
\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).
\]

- The Dutch name for the cross product is \textit{uitproduct} or \textit{uitwendig product}.
- The cross product can be computed using this trick:

\[
\begin{bmatrix}
 u_1 & u_2 & u_3 \\
 v_1 & v_2 & v_3
\end{bmatrix}
\]
For all $u, v, w \in \mathbb{R}^n$ and $r, s \in \mathbb{R}$ we have

1. $(ru) \times (sv) = (rs)(u \times v)$
2. $u \times (v + w) = u \times v + u \times w$
3. $u \times v = -(v \times u)$
4. $(v + w) \times u = v \times u + w \times u$
5. $0 \times u = u \times 0 = 0$
6. $u \times (v \times w) = (u \cdot w)v - (u \cdot v)w$

- Property 4 can be proved with properties 2 and 3.
Let \mathbf{u} and \mathbf{v} be two vectors. If θ is the acute positive angle between \mathbf{u} and \mathbf{v}, then

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}| \sin \theta.$$

- Acute means: $\theta \leq \pi$, hence $\sin \theta \geq 0$.
The cross product – geometry

Theorem

For all vectors \(\mathbf{u} \) and \(\mathbf{v} \) we have \(\mathbf{u} \times \mathbf{v} \perp \mathbf{u} \) and \(\mathbf{u} \times \mathbf{v} \perp \mathbf{v} \).

- Vector \(\mathbf{u} \times \mathbf{v} \) is perpendicular to the plane through \(\mathbf{u} \) and \(\mathbf{v} \).
- The length of \(\mathbf{u} \times \mathbf{v} \) is \(|\mathbf{u}| \cdot |\mathbf{v}| \sin \theta \).
- The right-hand rule determines the direction of \(\mathbf{u} \times \mathbf{v} \).
The area of a parallelogram

Theorem

Let \(\mathbf{u} \in \mathbb{R}^3 \) and \(\mathbf{v} \in \mathbb{R}^3 \) be the edges of a parallelogram \(P \). Then the area of \(P \) is equal to \(|\mathbf{u} \times \mathbf{v}| \).

- Observe that \(\sin \theta = \frac{h}{|\mathbf{v}|} \), so \(h = |\mathbf{v}| \sin \theta \).
- The area of \(P \) is
 \[
 |\mathbf{u}| \cdot h = |\mathbf{u}| \cdot |\mathbf{v}| \sin \theta = |\mathbf{u} \times \mathbf{v}|.
 \]
Example

Find the area of the triangle D with vertices $P = (1, -1, 0)$, $Q = (2, 1, -1)$ and $R = (-1, 1, 2)$.
Problem

Let S be a point in space and let ℓ be a line through P with direction vector v. Find the distance d of S to ℓ.

Method 1: Use the projection of $u = \overrightarrow{PS}$ on ℓ:

Works in \mathbb{R}^n for every n

$$d = |\mathbf{h}| = \left| \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \right|$$

Method 2: Use the cross product:

Only works in \mathbb{R}^3

$$d = |\mathbf{u}| \sin \theta = \frac{|\mathbf{u} \times \mathbf{v}|}{|\mathbf{v}|}.$$
Example

Find the distance of $S = (1, 1, 5)$ to the line

\[\ell : \quad x = 1 + t, \quad y = 3 - t, \quad z = 2t. \]
Definition

A parametrisation of the plane \mathcal{M} is a function of the form

$$\mathbf{p} + s\mathbf{v} + t\mathbf{w}, \quad s, t \in \mathbb{R}$$

- The vector \mathbf{p} is called a **support vector** and the vectors \mathbf{v} and \mathbf{w} are called **direction vectors**.
Example 7

Find a parametrisation of the plane through the points $A = (0, 0, 1)$, $B = (2, 0, 0)$ and $C = (0, 3, 0)$.
Problem

Find an equation of a plane M given by a parametrisation

$$p + sv + tw,$$

where P is a point of M and $p = \overrightarrow{OP}$.

Method 1: Three-point method: observe that P, $Q = p + v$ and $R = p + w$ are three points of M. This gives three equations involving x, y, z, s and t. Eliminate s and t to find one equation in x, y and z.

Method 2: Compute a normal vector $\mathbf{n} = \mathbf{v} \times \mathbf{w}$ of M, then

$$M: \mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0.$$
Example

Find an equation of the plane through the points \(A = (0, 0, 1), \)
\(B = (2, 0, 0) \) and \(C = (0, 3, 0) \).
Theorem

Two different non-parallel planes intersect in a line.

- Non-parallel means: the normals of both planes have different directions.
- If the planes are called M and N, then the intersection line is denoted as follows:
 \[\ell = M \cap N. \]
- A line in space can be regarded as the intersection line of two planes, in other words: it is the solution of a system of two equations:
 \[\ell: \begin{cases} \ ax + by + cz = d, \\ px + qy + rz = s. \end{cases} \]
Intersection line of two planes

Cross product method:

- The normal vectors \mathbf{n}_1 of M_1 and \mathbf{n}_2 of M_2 are perpendicular to the intersection line, so the cross product of \mathbf{n}_1 and \mathbf{n}_2 is a direction vector of the intersection line.
- Any point that satisfies both equations is a support vector of the intersection line.